Voice conversion (VC) aims at conversion of speaker characteristic without altering content. Due to training data limitations and modeling imperfections, it is difficult to achieve believable speaker mimicry without introducing processing artifacts; performance assessment of VC, therefore, usually involves both speaker similarity and quality evaluation by a human panel. As a time-consuming, expensive, and non-reproducible process, it hinders rapid prototyping of new VC technology. We address quality assessment using an alternative, objective approach leveraging from prior work on spoofing countermeasures (CMs) for automatic speaker verification. Therein, CMs are used for rejecting `fake’ inputs such as replayed, synthetic or converted speech but their potential for speech quality assessment remains unknown. This study serves to fill that gap. As a supplement to subjective results for the 2018 Voice Conversion Challenge (VCC’18) data, we configure a standard constant-Q cepstral coefficient CM to quantify the extent of processing artifacts. Equal error rate (EER) of the CM, a confusability index of VC samples with real human speech, serves as our quality measure. Two clusters of VCC’18 entries are identified: low-quality ones (low EERs), and higher quality ones that are more confusable with real human speech. None of the VCC’18 systems, however, is perfect: all EERs are $<30\%$ (the `ideal’ value would be 50%). Our preliminary findings suggest potential of CMs outside of their original application, as a supplemental optimization and benchmarking tool to enhance VC technology.

Share

ObEN is an artificial intelligence company that creates complete virtual identities for consumers and celebrities in the emerging digital world. ObEN provides Personal AI that simulates a person’s voice, face and personality, enabling never before possible social and virtual interactions. Founded in 2014, ObEN is a Softbank Ventures Korea and HTC Vive X portfolio company and is located at Idealab in Pasadena, California.